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Ring vortices generated electromagnetically 

By CHIA-SHUN YIH 
Department of Engineering Mechanics, University of Michigan 

(Received 9 September 1958) 

If an electric current of uniform density j, is passed axially through a stationary 
fluid between concentric cylinders of radii rl and r2 ( > r l ) ,  the fluid is stable to 
axisymmetric disturbances only if the damping provided by viscosity and 
electrical resistivity is sufficiently large. It is shown herein that the fluid may also 
be stabilized by passing a line current J along the axis, sufficient conditions for 
stability being 

J G -  

The values of J needed to stabilize the fluid when the fluid has non-zero viscosity 
and finite conductivity are calculated for the case r2 - rl < rl. In  this latter case, 
the ring vortices which exist under conditions of neutral stability are exactly the 
same as those for flow between rotating cylinders if J and j, have the same sign, 
and if J is not very small compared with njor2. 

1. Introduction 
In  a remarkable paper (Taylor 1923), Taylor presented the results of his 

analytical and experimental investigation of the stability of a viscous fluid 
between two rotating cylinders. The vortices which he found in the fluid for 
unstable conditions have since been found to be present in many fluid flows with 
curved streamlines. The cause of these vortices is here dynamical in nature, i.e. it 
is due to the centripetal acceleration of the fluid which is tantamount to a centri- 
fugal force. Can similar ring vortices be created in a quiescent fluid? The 
answer is in the affirmative if electromagnetic forces are allowed. In  the following 
sections, it will be shown that Taylor vortices can occur in a fluid between con- 
centric cylinders if a longitudinal electric current passes along the axis of the 
cylinders and another passes through the fluid. Specific results are given for small 
differences in radii. The cause of instability is the centripetd electromagnetic body 
force acting on the fluid in the undisturbed state. 

2. The undisturbed state 
The relationship between magnetic field strength H and current density j is 

curl H = 477j. (1) 

In  cylindrical co-ordinates ( r ,  0, z) ,  a current Jalong the centre line (z-axis) of the 
cylinders will give rise to a circular magnetic field equal to 2Jlr, current being 
counted as positive if it is in the positive z-direction. The circular magnetic field 
due to a current of densityj, passing between the cylinders in the axial direction 
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is 2nj0(r2 - <) / r ,  if the radii of the cylinders are denoted by rl and r2 ( > TI).  Thus 
the undisturbed state is characterized by 

It can be shown that a quiescent state of the fluid is consistent with the 
magnetic field given by equations ( 2 ) )  and that the only effect the field has is to 
6hange the (hydrostatic) pressure by an amount consistent with the equation of 
equilibrium . 

The electromagnetic body force per unit volume of the fluid is -pj0 H, acting 
in the (outward) radial direction. Since this body force is similar to the pseudo- 
body-force (so-called centrifugal force) in the case of a fluid under rotation, 
instability of the fluid can be expected to occur under suitable conditions. 

3. Formulation of the problem 
With (u, v, w )  and (H,, H,, H,) denoting the components of the velocity and of 

the magnetic field strength in the directions of the (r,  8, 2)-co-ordinate lines, the 
equations of motion for an incompressible fluid are 

p-- D~ = ax --+pvV2w+--, P 9 H - z  
a2 4n 9 7  

in which 

and p is the density, r the time, Y the kinematic viscosity, ,u the magnetic 
permeability, and !2 the gravitational potential per unit mass. The equations for 
the magnetic field are 

DH, 9u 
DT 9 7  
-=-  

DH, $ 3 ~  
DT 9 7  

= - + r p H H , ,  

in which 7 is the magnetic diffusivity. 
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A disturbance of the stationary fluid will give rise to small velocity components 
(u,v,w), and a deviation from the equilibrium magnetic field denoted by 
(hT, h8, h,). The total magnetic field is then given by 

If these are substituted in the equations of motion and the equations of magnetic 
diffusion and all quadratic terms in u,v,w, and the h’s are neglected, and if 
axisymmetry is assumed, the following linearized equations are obtained: 

au ax’ 
ar 

av 
ar 

aw ax’ 
ar az 

p s  = --+Pv 

p-=pv ( VZV-- i) i- Pjohr> 

p- = --+pvv2w, 

_ -  ah, - yV2hz. 
a7 

in which 

with p‘ denoting the pressure perturbation. The equation of continuity is 

since compressibility can be neglected. 
From the form of equations ( 6 )  and (8) we can conclude that h, and hB will be 

damped out if they are not initially everywhere zero (see Yih 1959). Then from 
equation (4) we conclude further that v will also be damped out. The differential 
equations to be dealt with are then equations (3)’ (5) and (7). Eliminating x’ from 
equations (3) and (5)’  we have 

We define dimensionless variables 
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where r, and r2 are the radii of the inner and outer cylinders. Then, on dropping 
the primes on r and x ,  we can write equations (10) and (7) as 

in which 

Following Taylor, we can make the following substitutions : 

(ul, w,, h,) = [ U(r)  cos mz, W ( r )  sin mz, h(r) cosmz] cut, 

in which m is the wave number for the z-direction. The equation of continuity then 
becomes rU‘+ U+mrW = 0, 

and equations (11) and (12) become 

(14) 

(L-m2-a)(L-m2) U = -m2A (15) 

in which 

With U = -m2Af and N = -, 
equations (15) and (16) can be written as 

4nABu 

7 

(L-m2-cr)(L-m2) f = (17) 

The boundary conditions corresponding to 
r2 U = W = O  at r = l  and r = - = a :  

are f = D f = O  at r = l  a n d r = a : .  (19) 

The simplest realistic boundary condition for h is that which corresponds to zero 
electrical conductivity of the walls, that is, to j, = 0. But 

. lab, ahg ah, 
aZ j r  = ; %-ax = - - (for axisymmetry), 

and so the boundary condition for h is 

A = O  at r = l a n d r = a  

for non-conducting walls. The task is to find the relationship between N and m 
for a given value of B, from the differential system consisting of equations (17) 
and (20). 
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4. Sufficient condition for stability 
A sufficient condition for stability can be given on physical grounds, in the 

manner of Rayleigh (19 16), or on mathematical grounds, in the manner of Synge 
(1938). The physical proof relies upon the fact that for a magnetically non- 
diffusive fluid (7 = 0) the lines of force move with the fluid. The proof for this 
well-known fact is identical with the proof for vorticity lines in an inviscid fluid 
(Lamb 1945, p. 204), and is available elsewhere. In  3 3 of this paper it has been 
shown that H, and H, (or h, and h,) will be damped out. In  a discussion of the 
sufficient condition for stability it can thus be assumed that only H, is different 
from zero. Since the total magnetic flux round a thin material ring of fluid is 
constant, and since by continuity the volume of this ring must be constant, so 
that its cross-section varies inversely as its radius r', H, must be equal to kr' 
(r' dimensional), with k as the constant (for the ring as it moves) of proportionality. 
The body force per unit volume in the r-direction, which is in general (Yih 1959) 

ar r a6 aH ax H2). r 
.IL ( 4(alHlz) +H,-+- aH, H,aH, -+H L-2 
4n ar 

can in the present discussion be written as 

- G H e  (a" x+r.  7 
Now imagine the thin material ring with a magnetic flux in the @-direction to be 

inst,antaneously situated at the position indicated by r ' .  The sole effect of the 
term 

- 

is to reduce the pressure throughout the ring by an amount ,uHi/8n, and therefore 
has no effect on the work done by the ring against pressure applied externally on 
the surface of the ring. Consequently, the only force acting on the ring which can 
be properly counted as a body force is 

Since the instantaneous value for r is r' for the thin ring, and since H, = kr', this 
force can be written as 

- - k2r'. 

The potential energy due to this centripetal force is then,~k~r '~/Sn,  which increases 
with r' for any particular value of k. 

Returning to the distribution of the mean field R0 specified earlier in this paper, 
we can imagine the fluid in its mean configuration to be composed of thin shells, 
each with a different value for E given by 

PJ 
4n 
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Since a higher value of k2 corresponds to a ‘heavier ’ fluid, and since stability will 
ensue if a ‘heavier ’ fluid shell occupies a position of lower potential energy (hence 
smaller r ) ,  one concludes that a sufficient condition for stability is that the 
quantity 2 (5 +jo)  

does not increase outwards-a situation which is possible only if 

J < -n- j , ( r~- -r~)  or J >jar;. 

In  this physical proof magnetic diffusivity has been neglected. It is tacitly 
assumed that, if a fluid with no magnetic diffusivity is stable, one with magnetic 
diffusivity will be so a fortiori. For the type of instability under discussion, this is 
a valid assumption, as will be demonstrated by a mathematical proof (of the 
sufficient conditions just reached), in which the effects of viscosity and magnetic 
diffusivity are not neglected. Whether magnetic diffusivity can have a de- 
stabilizing effect on certain flows, in the manner that viscosity can sometimes be 
destabilizing, is not known. An investigation of this possibility would be highly 
interesting . 

For a mathematical proof of the same result one turns to the dimensionless 
equations (17) to (20). Multiplying equation (17)  by rf (f being the complex 
conjugate off)  and integrating (by parts if necessary) with respect to r between 
1 and a, we have, upon utilization of the boundary conditions on f, 

1;+(2m2+a)1~++2(rnz+a)1~ = / l a ( g + l ) r h f d r ,  (21) 

in which 

Similarly, by multiplying equation (18) by rz  and r3z and integrating, one obtains, 
respectively, - 

H,+ (mZ+:) H, = - r n z ~ / ~ Q d r ,  1 r  (22) 

in which 

Equations (21) to (23) can be suitably combined to eliminate the integrals on the 
right-hand sides. The result is 

mzN(Iz + 2m211 + m410) + B(Hl + m2H,) + (H3 + m2H2) 

- 2 rhD(rh) dr + u mzNIl + m4N10 + s,” - 
But since 
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the real part of the integral in equation (24) is zero. Taking the real part of (24), 
we have 

m2N(.12 + 2m24 + m410) + B(H, + m2Ho) + (H, + m2H2) 

+a; m z N . l l + m 4 N I o + ~ H o + ~ H 2  = 0. (25) ( 'I 'I ) 
Now from the definitions of the integrals denoted by H ,  it is evident that 

a2Ho > H,, and a2Hl > H,. 

Thus, since N and B are of the same sign, if 

- B >  a2, or B >  0,  ( 2 6 )  

it follows from equation (25) that cr, is negative, and the fluid is stable. With the 
definition of B given by (13), the sufficient condition of stability is therefore again 
found to be 

J < - -njO(rf-r$) or J 3 njor$. (27 )  

5. Solution for small spacings 

replaced by 0 2 .  If the dimensionless parameters are now re-defined as 
For small spacings of the cylinders, the operator L in (17) and (18) can be 

TV r - r 1  2nd 
(r dimensional), m = __ t = -  <=- 

d2' d A '  

in which d is r2 - r,, and his the wavelength in the z-direction, equations (17 )  and 
( 1 8 )  can be replaced by 

( 0 2  - m2 - c) (D2 - m2) f = (d)l[ ( B  + 1 )  - - f ]  h, (28) 
2Bd 

rl rl 

where D stands now for did<. The boundary conditions are 

f = D f = O  at f = O  and 1, (30) 

h = O  at < = O a n d  1. (31) 

We shall investigate the stability for the cases in which the two currents are in the 
same direction (- B < l), so that theelectromagnetic body force on the undisturbed 
stateiscontripetal. If B isnot nearly equal to - 1, equations (28 )  and (29) become 
(since dlr, is assumed to be very small) 

(D2-m2--g) (D2-m2)f=  ( B + l )  (32) 

Effectively the same equations with the same boundary conditions as for the 
problem at hand have been solved exactly by Pellew & Southwell (1940), who also 
proved that for neutral stability CT is zero and not purely imaginary. Comparing 
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equations (32) and (33) with Pellew & Southwell's equations (see Lin 1955, p. 108), 
we find that the parameter corresponding to Pellew & Southwell's R (Rayleigh 

According to Pellew & Southwell's solution, then, 

T = 1707.8. (34) 

If 1 + B is positive but of the same magnitude as d/rl ,  and if the principle of 
exchange of stabilities is assumed, equations (28) and (29) become 

where p = -  2dB 
rl( 1 + B) * (37) 

The boundary conditions are still specified by (30) and (31). Solution of the 
differential system for three values of p by the method of Chandrasekhar (1954) 
yields the corresponding critical values of T as given in table 1. 

p ... 0.25 0-5 1.0 
& & r _ _ _ h _ _ \  

m _.. 3.12 3-13 3.12 3.13 3.12 3.13 
T (1st approx.) 1524.5 1524-6 1372.1 1372.1 1143.4 1143.4 
T (2nd approx.) 1524-4 1524.4 1371.6 1371-7 1142.4 1142.4 
T (3rd approx.) 1518-0 1518.0 1365.9 1366-0 1137.7 1137.7 

TABLE 1 

Computation for the case of negative J (  1 + B < 0) has not been performed. 
However, from the definition of N it can be seen that N is negative for negative J ,  
and from the forms of (36) and (36) it can be seen that the fluid is probably stable 
for negative J unless I 1 + BI is very small and /3 large. For very small I 1 + BI , the 
modified parameter 

can be advantageously used instead of T. A table for T' can be easily constructed 
from table 1. The value of T' for negative J of small magnitude or for small I 1 + BI 
is not much different from that for small positive J ,  so that a rough measure of it 
can be obtained by extrapolation from the table for T'. This measure can be 
improved by extending the range of p inTable 1, and hence in the T'-tablederived 
therefrom. 

T' = PT 

6. Feasibility of experiment 

vortices is of course - 112. If d/rl is 0.1, for the critical case 
For an experiment the most favourable value of B for the occurrence of ring 
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For mercury, we have, in e.m.u., 

1 7 = -- = 8000cm2/sec, 
47rpCT 

,u = le.m.u., 

v = 1.12 x 10-3cm2/sec, p = 13-6g/c.c. 

For rl equal to 10 cm and d equal to 1 cm, 

j ,  = 257 e.m.u. = 2570 amp/cm2. 

The total current through the annular space is then 

20nj, = 1.62 x 105amp, 

which is obviously a tremendous current. However, this current is the same (for 
the same cZ/r1) regardless of the size of the apparatus, and the total power per 
metre (which is roughly 4160 kW for r = 10 cm) decreases in inverse proportion to 
the square of the lateral dimension of the apparatus. Furthermore, the heat 
capacity of mercury per metre of length increases in direct proportion to the 
square of the lateral dimension. Thus the danger of boiling decreases rapidly as 
the lateral size increases. For highly ionized gases with a density much smaller 
than that of mercury and with very high conductivity, the necessary current for 
ring vortices to occur will be very much reduced. Unfortunately a simple experi- 
ment with a small apparatus does not appear feasible. 

This work was jointly sponsored by the University of Michigan and the Office 
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of the University of Michigan. 
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